KHALIL I. ELKHODARY

The American University in Cairo Dept. of Mechanical Engineering 11835 New Cairo, Egypt khalile@aucegypt.edu +2.022.615.3070 (Office) +2.010 11282583 (Cell)

vew Cano, Egypt	+2.010.11282383 (Cell)
1. Academic Appointments	
ssor, The American University in Cairo, Egypt.	July 2023 – Current

- *Professor*, The American University in Cairo, Egypt.
 Associate Professor, The American University in Cairo, Egypt.
 Assistant Professor, The American University in Cairo, Egypt.
 Post-Doctoral fellow, Theoretical & Applied Mechanics, Northwestern University.
 July 2023 Current
 July 2017 June 2023
 Sept. 2012 June 2017
 Post-Doctoral fellow, Theoretical & Applied Mechanics, Northwestern University.
- Research Assistant, Mechanical Engineering, North Carolina State University Sept. 2006 May 2010

2. Professional Appointments

• Member, Research Ethics Committee, Magdi Yacoub Heart Foundation.	Jan. 2021 – Current
• Consultant, Composite Manhole Covers Failure, Al-Masreya (Egypt)	Jan. 2021 – Mar. 2021
• Consultant, Research Management, Magdi Yacoub Heart Foundation.	Feb. 2020 – Jun. 2020
• Associate Editor, ASME Journal of Engineering Materials and Technology	Jan. 2019 – Current

3. Educational Background

•	American University in Cairo	Egypt	Intl. & Comparative Education	MA	Current
•	Northwestern University	USA	Theoretical & Applied Mechanics	Post-Doctoral	2012
•	North Carolina State University	USA	Computational Micromechanics	PhD	2010
•	North Carolina State University	USA	Applied Mathematics	MS	2010
•	American University in Cairo	Egypt	Materials Engineering	MS	2006
•	American University in Cairo	Egypt	Mechanical Engineering	BS	2003

4. Research and Creative Interests

- *Micro and Nano Mechanics*: Crystal plasticity FEM, and MD of dislocations.
- Biomechanics & Multiphysics: Cardiovascular system modeling, FEM, CFD, and FSI.
- Computational Science in Nonlinear Mechanics: ML and Graph theory in constitutive modeling and FEM.
- Educational Neurotechnology: VR/AR/MR/XR applications in collaborative engineering education.

5. Honors and Awards

Services Award, MENG Department, AUC	2020
Services Award, MENG Department, AUC	2018
AUC Teaching Excellence Nomination.	2016
RDI Researcher Award, Ceremony held in Cairo, Egypt	2015
• Invited Feature Article, Journal of Materials Research; Figure on Front Cover.	2011
• Research Assistantship, North Carolina State University, NC, USA.	2006-2010
• Outstanding Paper, with M.A. Zikry, et. al., Symposium HH, Materials Research Society.	2009
• Yousef Jameel Fellowship, Science & Technology Research Center, Cairo, Egypt.	2006
• Teaching Assistantship, The American University in Cairo, Egypt.	2003-2006
• Merit scholarship, The American University in Cairo, Egypt.	1999-2003

6. Research Output

Journal Papers

Nonlinear continuum mechanics (ML, Graph theory, FEM)

- 1- Z Tang, Y Wang, **KI Elkhodary**, Z Yu, S Tang, D Peng. "Data-driven modeling on anisotropic mechanical behavior of brain tissue with internal pressure" Defence Technology, (2023).
- 2- D Liu, H Yang, **KI Elkhodary**, S Tang, X Guo "Cyclic softening in nonlocal shells—A data-driven graph-gradient plasticity approach"- Extreme Mechanics Letters, (2023).
- 3- Gang Zhang, Hai Qiu, **Khalil I. Elkhodary**, Shan Tang, Dan Peng . "Modeling tunable fracture in hydrogel shell structures for biomedical applications." *Gels.* (2022)
- 4- Xiang, Q., Yang, H., **Elkhodary, K. I.**, Sun, Z., Tang S., Guo, X. "Derivation of the Orthotropic Nonlinear Elastic Material Law Driven by Low-Cost Data (DDONE)." *Acta Mechanica Solida Sinica. Online* (2022).
- 5- Xiang, Q., Yang, H., **Elkhodary, K.I.**, Tang, S., Guo, X. A multiscale, data-driven approach to identifying thermo-mechanically coupled laws bottom-up with artificial neural networks. *Computational Mechanics. Online* (2022).
- 6- Daoping Liu, Hang Yang, Khalil I. Elkhodary, Shan Tang, Wing Kam Liu, and Xu Guo.
 "Mechanistically informed data-driven modeling of cyclic plasticity via artificial neural networks." *Computer Methods in Applied Mechanics and Engineering. Online* (2022).
- 7- Zhang, Gang, Tian Fu Guo, Khalil I. Elkhodary, Shan Tang, and Xu Guo. "Mixed Graph-FEM phase field modeling of fracture in plates and shells with nonlinearly elastic solids." *Computer Methods in Applied Mechanics and Engineering* 389 (2022): 114282.
- 8- Chen, Jie, Hang Yang, Khalil I. Elkhodary, Shan Tang, and Xu Guo. "G-MAP123: A mechanisticbased data-driven approach for 3D nonlinear elastic modeling—Via both uniaxial and equibiaxial tension experimental data." *Extreme Mechanics Letters* 50 (2022): 101545.
- 9- Qiu, Hai, Hang Yang, **Khalil I. Elkhodary**, Shan Tang, Xu Guo, and Jinhao Huang. "A data-driven approach for modeling tension–compression asymmetric material behavior: numerical simulation and experiment." *Computational Mechanics* 69, no. 1 (2022): 299-313.
- 10- B.L. Boyce, [...], K. Elkhodary, [...], L. Xue, "The Second Sandia Fracture Challenge: Predictions of Ductile Failure under Quasi-Static and Moderate-Rate Dynamic Loading," Int. J. Frac. (2016)
- 11- S. Tang, Y. Yang, X. He Peng, W. K. Liu, X. Xu Huang, K. I. Elkhodary. "A Semi-numerical Algorithm for Instability of Compressible Multilayered Structures." Comp. Mech. (2015)
- 12- B. Boyce, S. Kramer, H. Fang, [...], K. I. Elkhodary, [...], T. Wierzbicki. "The Sandia Fracture Challenge: blind round robin predictions of ductile tearing." Int. J. Frac. Vol. 10, p1007. (2014)

Micro and nanocrystalline mechanics (FEM, MD, Experiments)

- 13- Islam H Abdelgaliel, MA Bakr, KI Elkhodary, Mohamed F Aly (2023). Experimental and Computational Investigation of Mg AZ31 Grain Refinement by Shear-Enhanced Rolling. *Materials Today Communications*.
- 14- Zhangtao Sun; Fu Tian Guo; **Khalil I. Elkhodary**; Hang Yang; Nian Zhou; Shan Tang. "Localization and macroscopic instability in nanoporous metals." *Acta Mechanica Sinica*. (2022).
- 15- Huang, C., Gao B., Zhou N., Xin R., Tang S., and Elkhodary, K. I.. "Enabling High-fidelity Twin Pattern Prediction in Polycrystals—A Mesoscale Grain Boundary Plasticity Model." *International Journal of Plasticity* 148 (2022): 103121.

- 16- Zhou, N., **Elkhodary, K. I.**, Zhang, L., & Tang, S. "Understanding the linear relation between pop-in excursion length and critical force for spherical nanoindentation." *Phil. Mag.* (2021).
- 17- Zhou, N., Elkhodary, K. I., Huang X., Tang S., and Li Y.. "Dislocation structure & dynamics govern pop-in modes of nanoindentation on single-crystal metals." *Phil. Mag.* (2020).
- 18- Huang, C., Elkhodary, K. I., and Tang S.. "Resolving the diffusionless transformation process of twinning in single crystal plasticity theory." *Intr. Journal of Plasticity* (2019).
- 19- Gazder, Azdiar A., Khalil I. Elkhodary, Mitchell JB Nancarrow, and Ahmed A. Saleh. "Transmission Kikuchi diffraction versus electron back-scattering diffraction: A case study on an electron transparent cross-section of TWIP steel." *Micron* 103 (2017): 53-63.
- 20- K. I. Elkhodary, M.A. Bakr. "Single Crystal Plasticity with Bend-Twist Modes." J. Mech. Phys. Solids. Vol. 79, pp 44-66. (2015)
- 21- K. Elkhodary, MS Greene, S Tang, T. Belytschko, WK Liu. "Archetype-blending continuum (ABC) theory." Comput. Methods Appl. Mech. Eng. Vol. 254, pp309-333. (2013)
- 22- K. Elkhodary, M. Zikry. "Crack Nucleation and Propagation via Dynamic Interactions of Crystalline Phases in Al-Alloys subject to Large Deformations." Phil. Mag. (2012)
- 23- K. Elkhodary, M. Zikry. "Dynamic Crack Nucleation and Propagation in Polycrystalline Al-Aggregates Subjected to Large Inelastic Deformations." Int. J. Frac. (2012)
- 24- K. Elkhodary, M. Zikry. "A Fracture Criterion for Finitely-deforming Crystalline solids: The Dynamic Fracture of Ductile and Brittle Single Crystals." J. Mech. Phys. Solids. Vol. 59. (2011)
- 25- K. Elkhodary, W. Lee, L. Sun, D. Brenner, M. Zikry "Deformation Mechanisms of an Ω Precipitate in a High Strength Aluminum Alloy Subjected to High Strain Rates," J. Materials Research, Vol. 26, Issue 4, pp487-497. (2010) (Invited Feature Article, Front Cover)
- 26- K. Elkhodary, L. Sun, D. Irving, D. Brenner, G. Ravichandran, M. Zikry "Integrated Experimental, Atomistic, and Microstructurally-Based Finite-Element Investigation of the Dynamic Compressive Behavior of 2139 Aluminum," J. Appl. Mech., v 76, p. 051306-1 (2009)
- 27- K. Elkhodary, H. Salem, M. Zikry "Equal Channel Angular Pressing of Canned 2124-Al Compacts: Processing, Experiments, and Modeling". Metall. and Mater. Trans. A: Physical Metallurgy and Materials Science, v 39, n 9, p 2184-219 (2008)

Biomechanics (Inverse FEM, In-vitro, Clinical)

- 28- Ali, A. M., Hafez, A. H., **Elkhodary, K. I.**, & El-Morsi, M. (2023). A CFD-FFT approach to hemoacoustics that enables degree of stenosis prediction from stethoscopic signals. *Heliyon*.
- 29- Abulfadl, Y. S., El Ela, Y. A., Al Khaiyat, A. M., Elkhodary, K. I., & Badran, M. (2023). Cyclophosphamide enfeebles myocardial isometric contraction force via RIP1/RIP3/MLKL/TRPM7mediated necroptosis. *Biomedicine & Pharmacotherapy*, *163*, 114819.
- 30- Heidari, A., Elkhodary, K.I, Pop C., [...], Tafti, A.H., "Patient-Specific Finite Element Analysis of Heart Failure and the Impact of Surgical Intervention in Pulmonary Hypertension Secondary to Mitral Valve Disease." *Med. Biol. Eng. Comput.* (2022).
- 31- Shalaby, N., Zemzemi, N., Elkhodary, K. I.. "Simulating the Effect of Sodium Channel Blockage on Cardiac Electromechanics." Proceedings of the Institution of Mechanical Engineers, Part-H: Journal of Engineering in Medicine (2020).
- 32- D.T. O'Connor, **K.I. Elkhodary**, Y. Fouad, [...], I. Jasiuk, W.K. Liu. "Modeling Orthotropic Elasticity, Localized Plasticity & Fracture in Trabecular Bone.". *Comp. Mech.* (2016)

Books & Book Chapters

- Morcos, P., K. I. ElKhodary, and H. G. Salem. "Mechanically Alloyed Magnesium Based Nanostructured Alloy Powders for Biomedical Applications." Magnesium Technology 2017. Springer, Cham, p. 35-41. (2017)
- 2- T. Belytschko, W.K. Liu, B. Moran, **K. I. Elkhodary**. Nonlinear Finite Elements for Continua and Structures, 2nd Edition. John Wiley & Sons, LTD, Chichester, UK. Dec. 2013. (7,400+ Citations)
- 3- M. A. Bessa, **K. I. Elkhodary**, W.K. Liu, T. Belytschko, B. Moran. *Solution Manual*: Nonlinear Finite Elements for Continua and Structures, 2nd Ed. John Wiley & Sons, Chichester, UK. Dec. 2013.
- 4- K. Elkhodary, M. S. Greene, D. O'Connor "The Archetype Blending Theory and Compact Bone Mechanics". Multiscale Simulations and Mechanics of Biological Materials. Eds.: Shaofan Li, Dong Qian. Publisher: John Wiley & Sons. May 2013. (Invited Book Chapter)
- 5- K. Elkhodary, S. Tang "Inclusion Clusters in the Archetype Blending Continuum Theory". Handbook of Micromechanics and Nanomechanics. Eds.: Shaofan Li, Xin-Lin Gao. Publisher: Pan Stanford Press. May 2013. (Invited Book Chapter)

Conference Papers

- 1- K. I. Elkhodary, LK Gaafar, AO Nassef. A Pedagogical Approach to an Engineering Educational Virtual Environment. *Technology Enhanced Learning Specifications, Standards and Quality*. APITEL, Alexandria Egypt. (2019).
- 2- **K. I. Elkhodary**, M. A. Bakr: Plastic Bend-Twist Modes In Dynamically Deformed Single Crystals With Embedded Secondary Phases. *Proceedings of PLASTICITY '16: The Twenty Second International Symposium on Plasticity and its Current Applications. Kona, Hawaii, USA.* (2016)
- 3- W. K. Liu, **K. Elkhodary**, S. Tang: Archetype Blending Continuum Theory. *The International Conference On Advances In Computational Mechanics, ACOME. Ho Chi Minh City, Vietnam.* (2012)
- W. Lee, K. Elkhodary, H. Salem, M. Zikry. : Experimental and Microstructurally Based Computational Investigation of the High Strain-Rate Behavior of High Strength Aluminum Alloys. *Multiscale Polycrystal Mechanics of Complex Microstructures*. MRS /AIME, 420 Commonwealth Dr., P. O. Box 430 Warrendale PA 15086 United States.[np]. (2011)
- 5- K. Elkhodary, W. Lee, B. Cheeseman, D. Brenner, M. Zikry: The Effects of Precipitates and Mnbearing Particles on High Strain-Rate Compression of High Strength Aluminum. *Multiscale Polycrystal Mechanics of Complex Microstructures*. MRS, Vol. 1225E. (2010). (Outstanding Paper)
- K. Elkhodary, W.Lee, L.Sun, B.Cheeseman, D.Brenner, M. Zikry: Deformation of Precipitate Platelets in High Strength Aluminum Alloys under High Strain-Rate Compression. TMS Proc., Vol 2: Materials Characterization, Computation & Modeling & Energy, 47-52. (2010)
- 7- K. Elkhodary, W. Lee, B. Cheeseman, D. Brenner, M. Zikry, High Strain-Rate Behavior of High Strength Aluminum Alloys, in *Nano- and Microscale Materials—Mechanical Properties and Behavior under Extreme Environments*, eds. A. Misra, T.J. Balk, H. Huang, M.J. Caturla, C. Eberl, MRS Symp. Proc., Vol. 1137E, Warrendale, PA, EE05-31.R1. (2009)

Patents

- 1- K. I. Elkhodary, H.G. Salem, M. A. Bakr, M. Elbadry. *Shear Enhanced Rolling (SER). A Method to improve grain size uniformity in rolled alloy billets. EP. Appl. No.:* 16873724.5 (2023).
- 2- K. I. Elkhodary, H.G. Salem, M. A. Bakr, M. Elbadry. *Shear Enhanced Rolling (SER). A Method to improve grain size uniformity in rolled alloy billets. CN. Appl. No.: 201680081298.0* (2019).

7. Fund Raising (1.35 Million USD)

• The American University in Cairo, Co-PI (PI Dr. Mostafa Youssef, MENG)	2022-2024
Title: Piloting a computational framework for pharmaceutical drug effectiveness control	in relation to
critical process parameters (CPPs). Funds: \$40,000	
• British Council, Co-PI (PI Dr. Sherif Aly, CSCE)	2022-2023
Title: UK- Egypt Higher Education Climate change partnerships Grants. Funds: \$54,000	
Sawiris Foundation, PI	2021-2023
<i>Title:</i> Fellowship for MSc in Mechanical Engineering. Sponsored by Sir Magdi Yacoub.	
<i>Funds</i> : \$21,000	
The American University in Cairo, PI	2021-Current
<i>Title:</i> Faculty Fellowship for MA in ICED. <i>Funds</i> : \$21,000	
• The American University in Cairo, PI	2021-2023
Title: Teaching and Learning Enhancement Grant, for VR in Engineering Education.	
<i>Funds</i> : \$15,000	
• Bartlett Cycle-II, Co-PI (PI Dr. El-Morsi, Co-PI Dr. Youssef)	2020-2022
<i>Title:</i> Surviving Cancer to Die of Heart disease? (Ranked #1) <i>Funds</i> : \$83,000	
• The American University in Cairo, Co-PI (PI Dr. El-Morsi, Co-PI Dr. Shalan CSCE)	2020-2022
<i>Title:</i> Translating Big-data from Computational Models to Novel Clinical Metrics.	
<i>Funds</i> : \$75,000	••••
• The Living Heart Project Academic Member Heart Model License, Pl	2020-Current
Title: Cardiac Electromechanics Modeling and Simulation.	
Support: Software, waiving equivalent of \$15,000 license fees per year.	2010 2021
• The American University in Cairo, PI (on behalf of MENG, ARCH)	2019-2021
<i>Title:</i> Educational Virtual Environment. <i>Funds</i> : \$440,000	2017 2010
• The American University in Cairo, Pl Title, Share Enhanced Delling and Designatile Standing Density Fronds (70,000)	2017-2019
<i>Title:</i> Shear Enhanced Rolling and Projectile Stopping Panels. <i>Funds</i> : \$79,000	2014 2016
• Research Development and Innovation Fund, EUROPE AID, PI	2014-2010
Academy of Scientific Descerb and Technology, DI	2012 2015
• Academy of Scientific Research and Technology, PT <i>Title</i> : Design of concrete metrix composites with chamically functionalized polymer here	2013-2015
<i>Funde:</i> \$14,000	•
• The American University in Cairo (Ranked Rest Proposal) PI	2016-2018
<i>Title</i> : Towards a Cardiac Electromechanical Modeling Tool. <i>Funds</i> : \$107,500	2010-2010
Academy of Scientific Research and Technology Co-PI	2016-2019
<i>Title</i> : ALM repairs for air-force components <i>Funds</i> : \$127,000	
The American University in Cairo PI	2014-2018
<i>Title</i> : Developing an HPC Infrastructure, with UTI	2011 2010
Support: \$50,000 worth In-kind contribution of hardware resources in data-center	
• Academy of Scientific Research and Technology, Co-PI	2013-2015
<i>Title</i> : Bioplastics for the Food Packaging Industry. <i>Funds</i> : \$48,000	
• Bibliotheca Alexandrina, PI	2013-2015
Title: Multiscale Materials Simulation, from Nano-science to Macro-mechanics. Funds:	\$10,000
• The American University in Cairo, PI	2012-2014
Title: Multiscale Materials Simulation, from Nano-science to Macro-mechanics. Funds:	\$10,000

8. Teaching

- Continuum Mechanics of Materials (**MENG 5930**). *Three offerings*. Introduced nonlinear mechanics with tensor algebra and tensor calculus on finitely deformed bodies, with various applications in thermo-mechanics.
- Advanced Stress Analysis in Design and Manufacturing (**MENG 5254**). *One offering*. Introduced nonlinear constitutive models (material and geometric) for the various material classes.
- Computational Methods in Engineering (ENGR 5202). *Two offerings*. Introduced parallel computing, and greatly expanded group MATLAB usage and programming, and with direct links to individualized student research.
- The Finite Element Method and Applications in Design (MENG 4553). *Three offerings*. Introduced as a Galerkin method in Sobolev space, with complete MATLAB codes in 2D, and with 3D ANSYS projects on thermo-mechanical applications. Offered with VR experience.
- Failure of Mechanical Components (**MENG 4227**). *One offering*. Greatly expanded on the failure mechanisms of polymers and ceramics; introduced X-FEM modeling.
- Mechanics of Materials (**MENG 3505**). *Twelve offerings*. Revised content to include the direct matrix method (introductory finite elements), offered with VR experience. Revised to meet three liberal education outcomes (group work, information literacy, and critical thinking).
- Strength of Materials (**MENG 2112**). *Four offerings*. Revised content to include a collaborative project, offered with VR experience. Revised to meet three liberal education outcomes (group work, information literacy, and critical thinking).

M.Sc. Theses Supervision (Recent)

- Advisor, Ms. Afnan Elhamshari, (RCSS). 2023.
 Topic: Introducing a Caputo-Land Fractional Order System for Myocyte Viscoelasticity. Now: Seeking a Ph. D. in Colorado Boulder, USA.
 Journal publication: Submitted to Nonlinear Dynamics (Q1).
- Advisor, Mr. Ahmed Ali, (MENG). 2023.
 Topic: A CFD-FFT approach to Hemoacoustics suited to Stethoscopic Auscultation. Now: Pursuing a Ph. D. at Carleton University, Canada.
 Journal publications: 2 in Heliyon (Q1, open access), one published, one under revision.
- Advisor, Mr. Omar Oraby, (MENG). 2023.
 Topic: An in-situ digital imaging correlation method for residual stress estimation in WAAM.
 Now: Accepted a Ph. D. offer in the USA.
 Journal publication: To be submitted.
- Advisor, Mr. Youssef Naga, (MENG). 2022.
 Topic: Educational Data Mining for Predicting University Students' Performance, to Enhance University Admission Criteria.
 Now: Founder and leader of Unibridge for high school extra-curricular educational activities.
- Co-Advisor, Mr. Mohamed Abdel-Hay, (MENG). 2021. (Advisor Dr. El-Morsi) *Topic: Fluid-Structure Interaction of NREL 5-MW Wind Turbine. Now*: Energy engineer at PGESCo, Egypt. *Publication in pipeline*: A Review of FSI-Based Computational Studies for Horizontal Axis Wind Turbines (HAWT)

Advisor, Mr. Youssef Abdel Raouf, (MENG). 2020.
 Topic. A patient-specific adaptation of the Living Human Heart Model in application to pulmonary hypertension.
 Now: PhD Student at Biommeda, Ghent University, Belgium.

Journal Publication: Heidari, A., Elkhodary, K. I., Pop, C., Badran, M., Vali, H., **Abdel-Raouf**, **Y**. M., ... & Tafti, H. A. Patient-specific finite element analysis of heart failure and the impact of surgical intervention in pulmonary hypertension secondary to mitral valve disease. *Medical & biological engineering & computing (2022)*.

- Advisor, Mr. Mohamed Abdelkhalek, (RCSS). 2019. *Topic: Semi-automatic spatio-temporal reconstruction of the left ventricle from CMR. Now:* PhD Student, Cardiovascular Lab, McMaster University, Canada. *Journal Publication*: Abdelkhalek, M., Aguib, H., Moustafa, M., & Elkhodary, K. (2020). Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging. *arXiv preprint arXiv:2009.12466.* On-hold until revisions can be completed with MYF, for re-submission.
- Advisor, Mr. Andrew Athanasios, (MENG). 2019. *Topic:* A computational model for dilated cardiomyopathy: morphology and electromechanics. *Now*: Runs his family business (unrelated).
- Co-Advisor, Mr. Peter Morcos, (MENG). 2018. (Advisor Dr. Salem) *Topic*: Nanostructured Mg-ZK50 Sheets Fabricated for Potential Use for Biomedical Apps. Now: PhD Student in Computational Materials Science at Texas A&M. Book Chapter Publication: Morcos, P., K. I. ElKhodary, and H. G. Salem. "Mechanically Alloyed Magnesium Based Nanostructured Alloy Powders for Biomedical Applications." Magnesium Technology 2017. Springer, Cham,p. 35-41. (2017)
- Research Advisor, Noha Shalaby, (NANO). RA from 2016-2018. *Topic: Computational modeling of nanodrug-induced effects on cardiac electromechanics. Now*: PhD Student at Neuroengineering and Pain Research Lab, at University of Connecticut. *Journal Publication*: Shalaby, N., Zemzemi, N., & Elkhodary, K. (2020). Simulating the effect of sodium channel blockage on cardiac electromechanics. *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine*, 234(1), 16-27.